목록15번 (2)
JS

필자의 부족한 평가 그냥 적당한 수열 문제이고, 너무 어렵지 않은, 통상 난이도의 50%정도의 난이도인 15번 수열 문제였다. 케이스 분류 잘 하고 역추적만 천천히 잘 했다면 쉽게 풀고 넘겼을 것으로 예상된다. 문제 다음 조건을 만족시키는 모든 수열 ${a_n}$에 대하여 $a_1$의 최댓값을 $M$, 최솟값을 $m$이라 할 때, $\displaystyle \log_2 \frac{M}m$의 값은? (가) 모든 자연수 $n$에 대하여 $\quad a_{n+1}=\begin{cases} 2^{n-2} & \text{(}a_n \text{ < 1)} \\ \log_2{a_n} & \text{(}a_n\geq\text{1)} \end{cases}$ (나)$a_5 + a_6 = 1$ 정답 객관식 : 4번 ( 15..

필자의 부족한 평가 그냥 적당한 수열 문제이고, 너무 어렵지 않은, 통상 난이도의 50%정도의 난이도인 15번 수열 문제였다. 케이스 분류 잘 하고 역추적만 천천히 잘 했다면 쉽게 풀고 넘겼을 것으로 예상된다. 문제 아래 글이 위 사진처럼 자연스럽지 않다면 >> https://seook.tistory.com/22 다음 조건을 만족시키는 모든 수열 ${a_n}$에 대하여 $a_1$의 최댓값을 $M$, 최솟값을 $m$이라 할 때, $\displaystyle \log_2 \frac{M}m$의 값은? (가) 모든 자연수 $n$에 대하여 $\quad a_{n+1}=\begin{cases} 2^{n-2} & \text{(}a_n \text{ < 1)} \\ \log_2{a_n} & \text{(}a_n\geq\te..