목록수학 (12)
JS
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/tIHjP/btsAuh1jX9q/u8fvzdU4jdKj7pfCAZ8t3k/img.png)
문제 다운로드 문제 a>√2인 실수 a에 대하여 함수 f(x)를 f(x)=-x^3+ax^2+2x 라 하자. 곡선 y=f(x)위의 점 O(0,0)에서의 접선이 곡선 y=f(x)와 만나는 점 중 O가 아닌 점을 A라 하고, 곡선 y=f(x)위의 점 A에서의 접선이 x축과 만나는 점을 B라 하자. 점 A가 선분 OB를 지름으로 하는 원 위의 점일 때 OA*AB의 값을 구하시오. 정답 주관식 : 25 해설 우선 O(0,0)에서의 접선으로 문제가 시작하므로 0에서의 기울기를 먼저 구한다. $f'(x)=-3x^2+2ax+2$이므로, $f'(0)=2$이다. 한편, f(x)에서 접선의 기울기가 2인 지점이 x=0말고 다른 곳이 있을 수 있으므로 확인해보자. $-3x^2+2ax+2=2$를 계산하면 $x=0, x=\fra..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/bnDJKH/btsAxW9nGhb/eUCCKJI2Pli0Kze19he3D0/img.png)
문제 최고차항의 계수가 1인 삼차함수 f(x)가 다음 조건을 만족시킨다. 조건) 함수 f(x)에 대하여, f(k-1)f(k+1)
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/bfmw3T/btstliS7QDr/98R3pssAtaL05RwXpdRTU1/img.png)
문제 다운로드 정답 다운로드 2024학년도 9월 모의고사이 2023년 9월 6일에 시행되었다. 이 글은 시험을 시행한지 24시간 가량 지난 뒤에 쓰는 글인데, 늦었지만 수험생들에게 고생 많이 했다는 말을 전하고 싶다. 이번 시험에서 성적이 원하는 대로 나오지 않았다면 오히려 좋다! 내 구멍을 인정하고 채우면 수능에서 그 구멍때문에 손해를 보는 일은 없을 것이다! 모두 고지가 얼마 남지 않았다. 조금만 더, 정말로 조금만 더 마지막 스퍼트를 하길 바란다. 놀 시간은 수능 끝나고 4개월가량 주어지니, 꼭, 집중하자. 9월 모의고사 미적분 30번에서 미분법 문제가 나왔다. 라이프니츠 미분을 할 수 있는 학생 기준으로 식만 잘 만들어 낼 수 있다면 쉽게 풀 수 있게 만든 문제였는데, 식을 세우는 과정마저도 수월..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/cj0nyd/btslB3PHs8v/gLWQ1nycreIMSIhazkX6K1/img.jpg)
필자의 부족한 평가 그냥 적당한 수열 문제이고, 너무 어렵지 않은, 통상 난이도의 50%정도의 난이도인 15번 수열 문제였다. 케이스 분류 잘 하고 역추적만 천천히 잘 했다면 쉽게 풀고 넘겼을 것으로 예상된다. 문제 다음 조건을 만족시키는 모든 수열 ${a_n}$에 대하여 $a_1$의 최댓값을 $M$, 최솟값을 $m$이라 할 때, $\displaystyle \log_2 \frac{M}m$의 값은? (가) 모든 자연수 $n$에 대하여 $\quad a_{n+1}=\begin{cases} 2^{n-2} & \text{(}a_n \text{ < 1)} \\ \log_2{a_n} & \text{(}a_n\geq\text{1)} \end{cases}$ (나)$a_5 + a_6 = 1$ 정답 객관식 : 4번 ( 15..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/mh5PI/btslugJoHgs/MSxpKPbutv9V3zTKJeQFX0/img.png)
서론 느낌이 삼도극 문제가 나올 것 같지가 않지만, 그래도 인생은 혹시 모르니 준비하는 것이 좋을 듯하다. 이번 문제는 2022학년도 대학수학능력시험 오답률 86%에 달하는 문제이다. 앞선 국어시험이 되게 어려웠고, 이 문제도 만만치 않아 수험생들의 멘탈이 많이 흔들렸을 것으로 예상된다. 도형근사 식 근사 나누기는 뭐하지만, 두 가지의 접근 방법을 모두 다 올리므로, 참고하면 좋겠다. 문제 그림과 같이 길이가 $2$인 선분 AB 를 지름으로 하는 반원이 있다. 호 AB 위에 두 점 P, Q를 $\angle {PAB}=\theta$, $\angle {QBA}=2\theta$가 되도록 잡고, 두 선분 AP, BQ의 교점을 R라 하자. 선분 AB 위의 점 S , 선분 BR 위의 점 T , 선분 AR 위의 점 ..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/oFyWi/btsljhmnhhZ/iRVkqkoVEKnjC3QTUkUaI1/img.png)
오답률 2024학년도 6월 모의고사 수학 미적분 메가스터디와 EBSi 오답률을 찾아보면 많은 학생들이 29번, 22번, 30번을 포함한 기존 준킬러-킬러 문항대에서 어려움을 느낀 것을 알 수 있다. 개인적으로는 미적분 28번이 상당히 어려웠다고 생각했는데, 오답률 베스트 5에는 끼지도 못 한점이 의외이다. 이번 게시글에서 풀이할 29번은 조금만 센스 있게 풀이하면 간단히 풀이할 수 있다. 이번 문제를 통해 미분, 식 조작 방법을 마스터 하면 될 듯 하다. 또, 문제에서 조건을 두 접선이 직각이라고 주어줬지만, 충분히 다른 각도를 주어 계산하게 할 수 있을 것이다. 물론, 이렇게 문제를 출제한다면 조금 쉽게, 또 문항 번호도 앞에 두겠지만. 평가원은 6월, 9월에 출제 했던 미분/적분 문제에서 비슷한 개념..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/pWMIK/btslbQ4dloy/UlskfhkAdzT3DtN1Qkd4xK/img.png)
2024학년도 6월 모의고사 수학 오답률(정답률) Best 5(미적분 기준) 메가스터디와 EBSi 오답률을 찾아보면 많은 학생들이 22번, 30번을 포함한 기존 준킬러-킬러 문항대에서 어려움을 느낀 것을 알 수 있다. 개인적으로는 미적분 28번이 상당히 어려웠다고 생각했는데, 오답률 베스트 5에는 끼지도 못 한점이 의외이다. 이번 게시글에서 풀이할 22번은 조금만 센스 있게 풀이하면 간단히 풀이할 수 있다. 개인적인 추측이지만, 올해 수능 킬러 테마중 하나는 정수-자연수 조건을 이용한 부등식 조절이 나오지 않을까도 조심히 예측해본다. (왼쪽 자료 출처 : 메가스터디 https://www.megastudy.net/Entinfo/2024_jungsi/exam/Exam_main.asp?seq=311&SubMa..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/bFVWYw/btsk9Rpx88o/KIWKMPz8byjtjb5El25bk1/img.png)
필자의 부족한 평가 어려운 문항의 번호대는 아니지만, 내가 풀이한 방법이 일반적이지 않다고 생각해 이렇게 풀이를 올리게 되었다. 문제 $a_2=-4$이고 공차가 $0$이 아닌 등차수열 $\{a_n\}$에 대하여 수열 $\{b_n\}$을 $b_n=a_n+a_{n+1}\,(n\geq 1)$이라 하고, 두 집합 $A,\,B$를 $$A=\{a_1,a_2,a_3,a_4,a_5\}\;B=\{b_1,b_2,b_3,b_4,b_5\}$$ 라 하자. $n(A\cap B)=3$이 되도록 하는 모든 수열 $\{a_n\}$에 대하여 $a_{20}$의 값의 합은? [4점] 정답 ( 객관식 ) 5번 : 46 해설 $A$와 $B$를 표현하면 $A$ $B$ $a_1=-4-d$ $b_1=-8-d$ $a_2=-4$ $b_2=-8$ $a_..